
AD-R174 953 RELIABILITY OF COMPLEX DEVICES IN RANDOM ENVIRONMENTS 1/1
(U) NORTHMESTERN UNIV EVANSTON IL DEPT OF CIVIL
ENGINEERING E CINLRR ET RL JUL 86 ESS-86-14

UNCLASSIFIED AFOSR-TR-86-2l S AFOSR-82-889 F/G 14/4 L

lllllllllllEIIEEEIIEEEEE



11111I -.0 1328 2
-60 ~11 22

1.25 1111

SCROCOPY RESOLUTION TEST CHART
NATr 5i~ P'IpFAil fF IANDApf)q 1961-A

r5. 
W



N AD-A 174 953

REPORT DOCUMENTATION PAGE
Il REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

NA I Approved for Public Release
2b. OECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

NA Dsrbto niie

4. PERFORMING ORGANIZATION REPORT NUMBERS) 5. MO1pe n#CVRATI, BPOR, UIjRT

6& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
(If applicable)

Northwestern University AFOSR/NM

sc. ADDRESS (City. Sta.e and ZIP Code) 7b. ADDRESS (City. St.t and ZIP Cod.)

Evanston, IL 60-'l Bldg. 410
Boiling AFB, DC 20332-6448

4a, NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it appUcabl-)AFOSR I NM 82-0189 A 0 '

If. ADDRESS (City. State and ZIP Cod. 10. SOURCE OF FUNDING NOS.

Bldg. 410 PROGRAM PROJECT TASK WORK UNIT

Boiling AFB, DC 20332 ELEMENT NO. NO. NO. NO.

% 11, TITLE (Includ. Security Clausification)

Reliability of Complex Devices in Random Environments
12. PERSONAL AUTHOR(S)

E. CINLAR and S. OZEKICI
113a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

Interim IFROM -____ TO ____July, 1986 34
1S. SUPPLEMENTARY NOTATION

IT. COSATI CODES 1I. SUBJECT TERMS (Continue on Alwjirse if necessary and identify by block number)

FIELD GROUP SUE. GR. Reliability,Imulti-component devices, random environments
semimarkov processes.

19. ASTRACT (Contiuiue On reverse if necessary and identify by block number)

The lifetimes of the components of a device depend on each other because of their
joint dependence on the environmental conditions. -We introduce intrinsic age processes,
one for each component, to handle such dependence. The data required can be obtained

by experiments under controlled laboratory conditions. The computations needed for
randomly varying conditions are recursive and can be used for making decisions regarding
maintenance and replacement.

f DTIC
DEC 1 986

20. DISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 3 SAME AS RPT. " OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOLBrian W. Woodruff (include An a Code) AFOSR/NM
(202) 767- 5027 A

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLA ST'TFTn
SECURITY CLASSIFICATION OF THIS PAGE

N .~ -- ~4.



AFOSR.TR- 8 6- 213 8

RELIABILITY OF COMPLEX DEVICES IN RANDOM ENVIRONMENTS*

by

E. INLAR and S. OZEKICI Accession For

NTIS GRA&I
DTIC TAB
Unannouniced

Distrl

Princeton University
Department of Civil Engineering
Princeton, New Jersey 08544

Engineering-Economic Series

Report EES-86-14

July, 1986

*Research was supported partially by AFOSR Grant 82-0189 to

Northwestern University, while both authors were there.

86 1? P 7



RELIABILITY OF COMPLEX DEVICES IN RANDOM ENVIRONMENTS*

by

E. INLAR and S. 6ZEKiCi

Consider a device like a jet engine, which is composed of 100 to 150

components. Each component itself is made of many parts, but for purposes

of repair and replacement the components are indivisible units. Reliability

studies for such a device are made difficult by the complexity of the device

and the changing environmental conditions it is subjected to.

The source of difficulty is the stochastic dependence of the components'

lifetimes on each other. This dependence is largely caused by the fact that

the same environmental conditions affect all components simultaneously.

Moreover, the environmental conditions in the field vary randomly over

time and are different from the test environments used in laboratories. A

paper by WINTERBOTTOM (1984) reviews some of the recent developments on this

issue and highlights the difficulties involved.

In MASTRAN and SINGPURWALLA (1978) and SHAKED (1977) attemps are made to

confront the problem by assuming that the lifetimes are "associated" or

"positively dependent by mixture." In LINDLEY and SINGPURWALLA (1984), for the

case of two components, the lifetimes are assumed to be conditionally independent

given a certain parameter, which parameter is then randomized. Thus, the random

parameter represents the effect of environment, which is construed to be unchanging

over time.

*Research was supported partially by AFOSR Grant No. 82-0189 to

Northwestern University, while both authors were there.
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Explicit consideration of the environment as a stochastic process has

been attempted in a number of papers. Most such papers take the model of

ESARY, MARSHALL, and PROSCHAN (1973) as the starting point, and model the

shock and wear "intensities" as randomly varying in response to environmental

conditions; see A-HAMEED and PROSCHAN (1973), (1975), INLAR (1984) and

FELDMAN (1976), (1977). These models are, however, for one component, and

tend to be statistically intractable. The use of multi-components are

discussed by ESARY and MARSHALL (1974), and very sophisticated models are

introduced in qINLAR (1977). The last paper models the environment as an

abstract Markov process, lets the Markov process govern the intensities of

shock and wear for each component, and view the deterioration levels of

components as an n-dimensional process with conditionally independent incre-

ments given the intensity processes. However, the mathematical complexity

and statistical intractability of this paper detract much from its usefulness.

In the present paper we introduce a relatively simple model. Environment

process is explicitly considered, but its effect on the components is made

deterministic. For this purpose, we introduce a concept, which we call intrin-

sic age, in order to relate the deterioration Df a component under field condi-

tions to the deterioration it would have experienced under laboratory conditions.

The data required are the distribution functions t - Fk(x,t), one for each com-

ponent k and each environmental state x, where Fk (x,t) is the probability that

the lifetime of the component k is at most t given that the environmental state

remains fixed at x throughout.

ILI'
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We envision these distribution functions to be obtained, by statistical

and engineering considerations, from test data in laboratory. Afterward,

based on these and the probabilistic structure of the environment process,

certain rules for maintenance and replacement decisions would be worked out

by mathematical means. For the operating engineer who is to make those deci-

sions daily, we provide simple schemes to compute the quantities needed for

decision making. Although we shall develop the concept fully, it seems par-

3> ticularly useful if the number of environmental states can be kept small; for

instance, for the jet engine alluded to above, it would be helpful if the

environmental states were summarized as take-off, cruise, landing, and idleness,

instead of the exact descriptions provided by temperatures, accelerations, vibra-

tions, and so on.

The paper is organized as follows. In the first section, the basic idea

is introduced in the simple case of one component and in a non-technical style.

The basic model is described in the second section. Some reliability computa-

tions are discussed, in the final section, assuming that the environment evolves

as a semimarkov process; these computations would be needed to determine optimal

policies for maintenance and replacement, which issues are not touched in this

paper. Finally, in the appendix a brief account is given of semimarkov process-

es and related results.

K%
Vic
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1. INTRINSIC AGE OF A COMONENT

Our aim in this section is to introduce the basic idea in the simple

case of one component and in a non-technical style.

Consider one component. Suppose that, throughout its lifetime, the

environmental conditions remain fixed at x. Let H(x,t) be the cumulative

hazard function in t under this condition, that is, if the probability that

the component's lifetime exceeds t is 1 - F(x,t), then

(1.1) 1 - F(x,t) = exp(-H(x,t)) , t > 0
...

Observe that this is also the probability that L exceeds H(x,t) where L is

an exponentially distributed random variable with mean one.

We view H(x,t) as the intrinsic age of the component at time t given

that the environmental state remains x throughout [O,t] and that the component

was new to start with. Then, L may be thought as the intrinsic lifetime:

when the intrinsic age reaches the intrinsic lifetime, the component fails.

Assuming that the distribution function t - F(x,t) has a density, so does

the increasing function t -* H(x,t), and the derivative of the latter is called

the hazard rate function. In this case, it is profitable to introduce a new

function, which we call the intrinsic ageing rate function, by

(.2) r(xa) d H(x,t)I a > 0(1.2) r') = di t=a>(xa)' -

,--Ve
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where T(x,a) is the time at which the intrinsic age becomes a:

(1.3) T(x,a) - inf {t: H(x,t) > a}

These relationships are pictured in. Figure 1 below.

H t(X,t)

raatO.. . . . . . .....

Figure 1. Evolution of intrinsic age under a fixed environ-
mental state x. Here, t is the intrinsic lifetime and L is
the real lifetime.

We come now to the main point. Suppose that the component is subject to

If"

* varying environmental conditions. Our basic assumption is that, at any time

t, the rate (per unit time) of increase of intrinsic age is r(x,a) if the

environment is in state x and the intrinsic age is a, this being independent

I



-6-

of how the environment and intrinsic age have arrived at their present

values x and a. In other words, letting X t and A t denote the environmental

state and intrinsic age respectively at time t, we assume that

(1.4) dA t = r(Xt,A t ) dt, t > 0.

Finally, as before, we assume that the intrinsic lifetime L is a standard

(mean one) exponential random variable independent of the environmental process

(X) , and we model the lifetime L of the component as the time at which

intrinsic age is about to exceed L:

(1.5) L inf {t: A > £1t

By the continuity of t At implicit in the main assumption, we indeed have

L=At.

Next, we describe various implications of the model that (1.4) and (1.5)

sets up. We do this in plain language, call the results "principles," and

omit proofs. The first statement is a re-statement of (1.1) - (1.2): if (A )t

satisfies (1.4) then r figuring in (1.4) is as described earlier by (1.1) - (1.2).

The remaining statements show the workings of the model in the simple case where

the environmental process (Xt) is piecewise constant. They suggest an easy

updating scheme for the intrinsic age process, which would be used in practice

for making decisions on when to do maintenance.

" ***,, / " ,, *t,"*,. ''' - , ,,'-.' ,,'- " --i,* --- ,-". -. ",'-' .,-".. --- " -" " / .-.-- .-. .- .. -' ,.I.'. , ... "'..-'."
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(1.6) IDENTIFICATION PRINCIPLE. Suppose that the component is new at the

beginning and spends all its life in a fixed environmental state x. Let

t -* F(x,t) be the distribution function of the lifetime under this condition.

Then, the intrinsic age of the component at time t is

At = H(x,t) = -log[l - F(x,t)]

(1.7) AGEING PRINCIPLE. Suppose that a mission is to start at time s and

last t time units, and the environmental state is to remain x throughout the

mission. If the intrinsic age at the start is A. = a, then at the end it is

As+t = h(x,a,t) = H(x,T(x,a) + t)

(See Figure 2 below.) We call h(x,a,t) - a the amount of ageing caused by the

mission.

in4rinsic
age.

Figure 2. If the intrinsic age is a at the beginning, then

it is h(x,a.t) after t time units spent under condition x.
Generally, T(x,a) is not equal to the starting time s.
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(1.8) ADDITIVITY PRINCIPLE. Suppose that a mission consists of n sub-missions

causing al,... ,an amounts of ageing. Then, the amount of ageing caused by the

mission is a1 + ... + an

(1.9) RELIABILITY PRINCIPLE. Suppose that a mission is to cause an amount a

of ageing. Given that the component has not failed before the mission starts,

its reliability in the mission is e-a.

We illustrate these principles with an example. For simplicity, we

consider a mission with two stages, during which the environmental states are

x and y. Let H(x,t) and H(y,t) be given according to the identification

principle (1.6). Initially, when the mission starts at time s, the component's

intrinsic age is known to be a. The component spends t time units under the

environmental state x and u time units under y. According to the ageing

principle, then, its intrinsic age will be b = h(x,a,t) at time s+t and

c = h(y,b,u) at time s+t+u. See Figure 3 below. So, the mission is to cause

c-a amount of ageing, and the reliability is e-(c-a).

H

Figure 3. Starting with intrinsic age a, t time units spent

under x makes it b and u time units spent under y makes it c.

%C
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As the example shows, the ageing principle is in fact an updating

scheme assuming that the environmental state is known. In practice, as

time flows, past history of the environmental process will become known and

* the intrinsic age can be computed by the principles here. The decisions

regarding preventive maintenance and replacement would then be made on the

* basis of the computed intrinsic age. On the other hand, finding the optimal

K maintenance and/or replacement policies require computations of a different

sort: then the future has to be take. into account, which requires a

* .stochastic description of the environmental process (X ). We shall take up

* computations of that kind in Section 3.

%,-4
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2. DEVICES WITH IAY COMOINENTS

In this section we describe the basic model for a device with many

components.

Throughout, (PA,P) will be a complete probability space. We write

1+ for [0,0). To sav= on notation, we do not introduce o-algebras explicitly

on L+., and later, on other spaces.

Let E be a set equipped with a a-algebra. Elements of E are called

environmental states (or states, simply). Elements of the a-algebra on E are

called the measurable subsets of E. We suppose that, for each state x in E,

the singleton {x} is measurable. We distinguish a point in E, denote it by 6,

and think of it as the state that causes no ageing (idle state for the device).

We let X = (X t)tcl be a stochastic process with state space E; it represents

the environmental process. For the present, we leave its probability law

unspecified.

We let K denote the collection of all components. It is a finite set,

its elements are called components. For each k in K, we let C(k) be an

exponentially distributed random variable with mean one; it stands for the

intrinsic lifetime of the component k. We assume that L(k), kEK, are

independent of each other and of the process X.

25 We let F denote the collection of all positive vectors a = (a(k))k K,

that is, F = 1 K . Each a in F represents a vector of intrinsic ages of all

components. We let A = (At)tck be an increasing continuous stochastic process

taking values in F; that is, for each component k, t - A (k) is increasing and
t

continuous and takes values in I+; it represents the intrinsic age process for

4, ,. component k.

%' "  -% - :" , "," ".-- "--.,,-.-.-.-.-.-.-- '.."" ,-"- . -," --" " '.-- .- ' ''"""' '- ."-- "-.
". .• I | [ i " " " " -" " 7 '" ''~-,", ,, " - ." - ' "'A' ,-,
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We define the lifetime of component k by

(2.1) L(k) = inf {t: A (k) > t(k)}t

and let L = (L(k))kcK be the vector of lifetimes. The following is the main

assumption regarding the structure of A.

(2.2) HYPOTHESES. i) For each kEK there exists a positive measurable function

rk on ExF such that

(2.3) dA t(k) = r k(Xt,At)dt , t > 0

(ii) We have r (xa) strictly positive for each kCK, aCF, and xCE
k

with x # 6 For x ; 6, the idle state in E, we have rk(x,a) = 0 for all

kEK and acF.

The basic hypothesis is the first one: the intrinsic age process A is

a deterministic functional of the environment process X. In particular, (2.3)

implies that the rate of increase of the intrinsic age of component k at time

t is a function of the identity of that component, the present state of the

environment, and the present intrinsic ages of all the components. Hypothesis

(ii) is a regularity condition that is meant to ensure that (2.3) has a unique

solution; in particular, it singles out the state 6 as the only state that

causes no ageing.

Sf-.7
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A special case of interest is when rk(x,a) depends on a C F only

through a(k), that is,

(2.4) rk(x,a) f k(x,a(k)) if a = (a(k))kEK

In this case, the intrinsic ages At(k), kEK, do not interact except through

their common dependence on X. Then, the results of the preceding section

applies to each component separately. This case is important in applications

because of its computational simplicity. But we do not assume this simpler

case because it does not reduce the mathematical development appreciably.

In the further special case where rk(x,a) is free of a, say,

(2.5) rk(x,a) rk(x)

we have

t

At(k) = A 0(k) + f rk(xs ) ds

and t -1 At(k) is an additive functional of X. This case has been studied in

some depth, see PARKUS and BARGMAN (1970) and especially INLAR (1977) where

this case occurs as a special case of a model different from the general one

here.

In the special case, uninteresting from our present perspective, where

rk(x,a) is free of x, the process A becomes deterministic. Since the

intrinsic lifetimes C(k) are independent of each other, in this case the life-

times L(k) are also independent. Note that, though the lifetimes L(k) are

I6%
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stochastically independent, this case does accommodate deterministic inter-

actions between the intrinsic age processes.

Going back to the general case, we summarize our point of view once

more. Every component is endowed with an intrinsic lifetime that is

independent of everything else and has the exponential distribution with

mean one. The distinguishing characteristics of a component k are summarized

by the function r k(x,a), which is the response (the ageing rate) of k to the

environmental state x at a time when the intrinsic ages of the components are

a(j), jEK.

We shall think of A as a function defined on K and taking random valuest

in I+; similarly, we think of elements a C F as functions defined on K and

taking values in K+. We let r(x,a) denote the function on K whose value at

k C K is rk(xa). For computational and display purposes, functions on K

ought to be thought as column vectors. We let a denote the counting measure

on K, it can be thought as a row vector whose entries are all equal to one.

Thus, for a C F we have

(2.6) Ga = ) a(k)
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With these notational conventions, the basic hypothesis expressed by

the differential equation (2.3) can be re-stated as

(2.7) dAt = r(Xt,A t ) dt , t > 0.

Solution of this can be obtained by mimicking the one-dimensional (one

component) case discussed in the preceding section. We describe a few

details for the special case where the environment process X is piecewise

constant.

For fixed xcE, let t - h(x,a,t) denote the solution of

(2.8) df(t) = r(x,f(t)) dt, t > 0

with the initial condition

(2.9) f(O) = a

In other words, the k-entry of column vector h(x,a,t) is the intrinsic age

of component k at time s+t assuming that the environment remained in state x

throughout [s,s+t) and the intrinsic ages of the components at time s were

a(j), jcK. In particular, for x 6, we have

(2.10) h(6,a,t) = a , t > 0

because of the assumption that r(6,a) = 0 for all a.

1 ..
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Next, we describe the construction of the path t -b At as a functional

of the trajectory t - Xt in the simple and important case where t - Xt is

piecewise constant. Let T0 - 0 and let TIT be the successive jump

times of X. By the term piecewise constant, we mean that t - X t is constant

over each interval [Tn,Tn+ I ) and that the increasing sequence of times Tn

approaches +- as n goes to + -. We let Y be the value of Xt for

nt

t C [TnTn+I) for each integer n > 0 , that is,

(2.11) x t = n for T < t < T
n - n+l

Given A0 , we first define the values B of A for t = Tn recursively:n tn

(2.12) B0  A0 ; B n+ =h(Y nB nTn+ -T n) , n > 0;

and then put

(2.13) A h(Y B t - T ) for T < t < T
t n n n n+l

This defines At for all t c I+, and in view of the way h is defined as the

solution to (2.8) and (2.9), the resulting path t - At satisfies (2.7).

-it

I's
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3. RELIABILITY CONSIDERATIONS

This section is devoted to various computations on the reliability of

the device. These computations would be needed for purposes of decision
.1

making on maintenance and replacement studies.

Throughout, .c assume that the environment process X - (Xt ) tl is a

piecewise constant semimarkov process with state space E and semimarkov

kernel Q. In other words, with the jump times T and the successive statesn

Y defined as in (2.11), we assume thatn

d' (3.1) P[Yn+ICC, Tn+ 1 - Tn c DIY0 ,...,Yn; T0 ... ,Tn] = Q(YC,D)

4

for every integer n > 0, measurable set C c E, and Borel set D C I+-

For further information on the processes (X ), (Y T ), and the semimarkov
t' n n'

kernel Q we refer to the appendix. At this point, we should mention that,

then, (Y n) is a Markov chain with state space E and transition kernel

(3.2) P(x,C) = Q(x,C,I+)

and that, given the Markov chain (Y1R), the successive sojourn durations

T -T0,T2-T1,. are conditionally independent, with the conditional distribu-

tion of Tn+l - Tn depending on Yn and Yn+l only, but otherwise arbitrary.

In the special case where the sojourn distributions are exponential and depend

only on Yn' that is, if
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(3.3) Q(x,C,D) = P(x,C) J X(x)e -X(x)t dt
D

then the semimarkov process X becomes Markov.

In general, the sequence (Y n,T n) satisfying (3.1) is called a Markov

renewal process with state space E (that the Tn take values in 1+ is

understood). Moreover, then, defining Bn = ATn as in (2.12), the sequence

((Yn B n),T n ) is again a Markov renewal process, the Markov chain (Yn B n)

taking values in the space h = E x F. In fact, in the computations to

follow, it is (Y n BnlTn) that plays the central role. Note that, even if

we assumed E to be discrete, the space f is not discrete and hence there is

little to be gained mathematically by specializing E to be discrete (computa-

tions in practice are another matter). However, if E is discrete, the

corresponding formulas can be obtained by replacing dy and dz below by y

and z and changing the integrals over y and z to summations.

Recall that the lifetimes L(k), intrinsic lifetimes L(k), and intrinsic

ages At(k) define random functions L, L, and At on the finite set K of

components. Therefore, L > At means that L(k) > A,(k) for all kcK, and L > t

means that L(k) > t for all kcK. Also, recall Lnat a is the counting measure

on K and acts as the summation operator as described by (2.6).

Finally, we introduce the following notations of convenience. We write

I for the indicator function of D, that is, iD(x) is equal to 1 or 0 according
DD

as x is in D or not. We let

(3.4) H(x,a,t;C) = 1c(h(x,a,t))

C

. -



-18-

(3.5) q(x,t).- Q(x,E,(t,,')) = P[Tn+i - Tn > t Yn  x]

and, for all xCE and aCF, we write

(-3.6) Pxa 1] = P [IXo - x, AO = a, IC > a]

that is, the conditional probability measure given that environment starts

in state x, intrinsic ages at a(k), keE, and all of the components are in

working order.

Reliability in a mission of length t

By this we mean the probability that no component fails during[O,t]

and that there can be no maintenance, repair, or replacement during [O,t].

We compute this probability assuming that the time 0 coincides with a jump

of environmental process and that the state x of the environment and the

intrinsic ages a(k) of the components are known and it is further known

that all components are in working order. Thus, what we want is

(3.7) Pxa[L > t] Pxa [r > A] = Exa exp[-a(At - a)]

in view of (2.1) and the memorylessness of the exponential variables (k)

and their independence from each other and from X and A.

To this end we use a renewal argument at the time T1 of first jump for

X. If T > t, then At = h(x,a,t) = b and the probability that no failures

'11
occur is exp[-a(b-a)] . If T s < t, then A h(xas) =b, probability

IL - .
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that no failures occur during [Os] is exp[-a(b-a], and the future after s

is a probabilistic replica of that at time 0 except that the initial variables

now are y and b, where y is the state that X jumps to at time s = TI . Thus,

(3.8) P xa[L > t] = q(x,t) exp[-o(h(x,a,t) - a)]

+ f Q(x,dy,ds) H(x,a,s; db) e- (b-a)Pyb[L>t-s.

ExFx [0, t]

We introduce a semimarkov kernel on the space ExF by, in differential form,

(3.9) &(x,a; dy,db; ds) =-Q(x,dy,ds) H(x,a,s; db) e- (b-a) V

where we removed the parentheses in the more correct notation Q((x,a),d(y,b),ds),

In the notation of Appendix, the equation (3.8) is a Markov renewal equation:

letting f(x,a,t) denote the left side and g(x,a,t) the first term on the right,

we have

(3.10) f = g + Q * f

According to Proposition (A.14) of Appendix, (3.10) has a unique solution,

f = * g, where R is the Markov renewal kernel corresponding to . Thus,

the solution of (3.8) is

* (3.11) P L L>tl f A(x,a; dy,db; ds) q(y,t-s) exp[-G(h(y,b,t-s) -b)]

ExFx[Ot]

AJO



-20-

Perhaps the more important point here is that (3.8) has a unique solu-

tion. For, computing requires solving equations of similar difficulty.

However, an explicit solution like (3.11) is valuable for theoretical purposes

and is useful to those who would seek optimal policies for maintenance. An

envisioned use of (3.11) is mentioned in the next paragraph.

Failure before maintenance

At each time Tn of change of state for the environment, the new state Yn

and the intrinsic age vector Bn = ATn will be known through computations of

the sort described in Section 1. We suppose that the times T would be then

only times at which a maintenance action can be taken, and the decision maker

would decide for maintenance by considering only the state Y and the vectorn

Bn : if Y = y and Bn = b, maintenance would be decided for if (y,b) belongsn

to a certain set M. In other words, the time of first maintenance would be

(3.12) T = inf {Tn : (YnBn) E mN

where M is a pre-specified measurable subset of ExF. The set M itself would

be chosen in accordance with further studies considering costs, risks, etc.

Of particular importance in such considerations would be probabilities like

Pxa[IL > t] which we just examined and P xt > T] , which we shall computexaL xa

next. For instance, if one or the other or some combination of these two

numbers is "too low," then the point (x,a) would belong to M.
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Thus, the probability we consider next, Pxa[L > T] is the probability

that no failures occur before the maintenance time T, given that X = x,

A0 = a, and no failures occurred before the time taken as 0. We use a

renewal argument at the time T1 of first jump for X, just as in the preceding

computation. It yields, for (x,a) t M,

(3.13) Pxa[L>T] = f Q(x,dy,ds) 1 i(y,h(x,a,s)) exp [-o(h(x,a,s) - a)]

ExK+

+ f Q(x,dy,ds) H(x,a,s; db) 1N(y,b)e-°(b-a) pyb[L>T]

EXFXR+

where we put N = (EXF)\M, the no-maintenance set. This is a linear equation of

the form

(3.14) f(x,a) = g(x,a) + f P(x,a; dy,db) f(y,b)
E×F

and the sub-Markovian kernel f is "highly defective":

(3.15) P(x,a; E,F) <J Q(x,dy,ds) 1 N(yh(xa,s)) < Q(x,Ek+)
Ex 1+ N-

for x 6, since h(x,a,s) = b > a for x # 6, and for x = 6, it is clear that

the next state will differ from 6. It follows that (3.14) has a unique solution,

of t1.- form f = Rg in kernel-function notation, where R is the potential kernel

corresponding to P:

(3.16) R(x,a; dy,db) I P (xa; dydb)
57 n= 0

I,%
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%

Thus, the unique solution of (3.13) is

(3.17) Pxa[L>T] f R(x,a; dy,db) g(y,b)
ExF

= f R(x,a; dy,db) f Q(y,dz,ds)

ExF Exl+

1 M(z,h(z,b,s)) exp[-c(h(z,b,s) - b)]

Again, as we remarked after (3.11), this computation shifts the real burden to

the computation of R. On the latter issue, we should note that, in view of

(3.15), pn(xa; ExF) has a geometric tail in n, and approximating R should be

easy.

At the time of first failure or maintenance

Let T be the time of first maintenance as described earlier, by (3.12).

Let S be T or the time of first failure (of some component), whichever is

smaller:

(3.18) S = T A inf L(k)
kEK

In this paragraph we are interested in the time S and the states of environ-

*ment and intrinsic ages at the time S. Our aim is to compute the following

joint "distributions":

'Z4

*1 ' ,b* % 4' - 4 M

m immimmlmlu mmml 8 | - 4 * y p. ) 4...
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(3.19) QM(x,a; DB; t) = Pxa [XS cD, A S B, S < t, S = T]

(3.20) Q k (x,a; D,B; t) = Pxa[XSeD, A5EB, S < t S = L(k)]

where D is a measurable subset of E, B is a Borel subset of F =-+ and

t C 1+* Of coursc,

(3.21) QI (x ,a; D,B. t) + Q k(x,a; D,B; t) = P [x SCD.A~c , CS < ti

These distributions would be needed in studies concerning optimal maintenance

and replacement and in figuring out system performance characteristics in the

long run.

These computations are similar to the preceding ones. Letting N =(EXF)\ M,

we introduce the semimarkov kernel 9 by

(3.22) Q)(x,a; dv,db; ds) = Q(x,dy,ds) H(x,a,s; db)e Iba lN(Yb)

Then, using a tlarkov renewal argument at T 1 as before, for (x,a)CN

(3.23) Q 1(x,a; D,B; t) = J Q(x,dy,ds) J H(x,a,s; db)e'Cba 1 (y,b)
Dx[0,t1 B

+ f Q(x,a; dy,db; ds) Q M(y~b; D,B; t-s)
% ExFx [O,t]

and
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(3.24) Qk(x,a; D,B; t) = f ds q(x s) 1 Wx f H(x,a s; db)e-G(b-a)r xb
[kt D B k~b

+ f Q(x,a; dy,db; ds) Q k(y,b; D,B; t-s)
ExFx [o, t]

For fixed D and B, each of these equations is a Narkov renewal equation of the

4'form f = g + Q *f . Therefore, by (A.14), each has a unique solution of the

f orm. f =R gwhere

(3.25) 1 r
n= 0

is the Markov renewal kernel corresponding to Q and where g(x,a,t) is the

first term on the right of (3.23) or (3.24). So,

(3.26) Q(x ,a; D,B; t) = f R(x,a; dy,db; ds) f -s Q(y,dz,du)
ExFx[Q't] Dx[0,ts

(H(y,b,u; dc) e-'j(c-b) 1 11(z'c)

and

(3.27) Q k(z ,a; D,B; t) = f R(x,a; dy,db; ds) J du * q(y,u) 1D(y)
ExFx[10It] [0,t-sjD

*fH(y,b,u; dc) e0G(c-b) r jy,c)
B
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APPENDIX

This is a rapid account of notions we need from Markov renewal theory.

We refer to qINLAR (1969) and (1975) for further details.

As before we write i+ for [0,co) we let E be a measurable space (the

a-algebra of measurable subsets of E will be implicit). In applications, E

is sometimes the environmental state space E and sometimes the space
: iE=E F

V A semimarkov kernel on E is a family of numbers Q(x,C) in [0,1],

defined for each x e E and each measurable subset C of E x R+, such that

*.- i) x -> Q(x,C) is a measurable function on E, and

ii) C -> Q(x,C) is a measure on E x 1+ whose total mass is at most one.

When C = A x B , a measurable rectangle, we write Q(x,A,B) instead of

Q(x,AxB). Similarly, for the measure element at y c E and t c 1+ , we write

Q(x,dy,dt) instead of Q(x,d(y,t)).

Given a semimarkov kernel Q on E, its iterates Qn are defined recursive-

ly via

1 if x c A and 0 E B

(A.1) Q0(x,A,B)

0 otherwise,

(A.2) Qn+l (x,A,B) = f Q(x,dy,dt) Qn(y,A,B-t) , n > 0
Exl+

": • ,' i | i ' .. . . . . . . .. ", -. .. ,," ,' ,',, . "- . ,. - , m , . ', ,. .',
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where B - t = {s - t : s E B} With these we define a kernel R by

(A.3) R(x,A,B) = I Qn(x,A,B)
n=0

called the Markov renewal kernel corresponding to the kernel Q, which plays

the same role in Markov renewal theory as the renewal function does in

renewal theory.

Let Q be a semimarkov kernel on E and suppose that it is not defective,

that is, Q(x,E, +) = 1 for all x. A Markov renewal process with semimarkov

kernel Q is a discrete parameter process (Y nTn) taking values in E x R+

such that

(A.4) P[Yn+l e A, Tn+1 - Tn C BIY0 ,...,Yn; T0 ,'''' Tn ] = Q(Yn 9AB)

for all integers n > 0 , all measurable AC E , and all Borel B C I+ Then,

(Yn) is a Markov chain with state space E and transition kernel

(A.5) P(x,A) = Q(x,A,R+)

Also, it is easy to see that

(A.6) Qn(xAB) = P[YN c A, Tn c BY 0 =x , T 03

and that R(x,A,B) is the expected number of times Yn c A and Tn E B, assuming

that YO = x and To = 0
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Associated with a Markov renewal process (YnTn) with T = 0 and the

added condition that

(A.7) lirT =
n

we define a continuous parameter process (X t) taking values in E by setting

(A.8) X = Y if T < t < T+lt n n - ~

Note that X is piecewise constant, its jumps occur at T1 ,T2,... , and the

successive states it visits are Y 0 ,YI, .. . Such a process X is called a

semimarkov process with state space F and semimarkov kernel Q.

In the applications here, we modeled the environment process X as a

semimarkov process on the state space E with semimarkov kernel Q. In this

case, the conditions that Q(x,E,I+) = 1 for all x and that lim T =n

are very natural. However, in subsequent computations, a number of other

semimarkov kernels arose naturally but are defective: Q defined by (3.9),

QM defined by (3.19), Qk defined by (3.20), and Q defined by (3.22) are all

semimarkov kernels on E = E x F and are all defective, that is, for instance,

Q(x,a; t,&+) < 1 for most x. We do not associate Markov renewal processes

with such defective kernels.

.1
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Markov renewal equations

Markov renewal equations are generalizations of renewal equations. We

put here the essentials in the general case and give a result that got used a

number of times in Section 3.

Let Q be a semimarkov kernel on E; we do allow it to be defective, that

is, Q(x,E,l+) < 1 is possible. For a bounded measurable function f on

E x I+ , we define the function Q * f on E x 1+ by

(A.9) Q * f(x,t) = f Q(x,dy,ds) f(y,t-s)
EX[Ot]

and define Q * f and R * f similarly (the latter is well-defined for f positive

but may fail to exist for arbitrary bounded f).

Let f and g be bounded positive measurable functions on E x I+ . Suppose

that

(A.10) f = g + Q * f

This is called a Markov renewal equation. The following shows how to solve it

(theoretically) and points out its strong resemblance to renewal equations.

(A.11) PROPOSITION. Suppose that Qn(x,E,[O,t]) -* 0 as n -> o for all

x c E and t E R+ . Let f and g be bounded positive measurable functions

satisfying (A.1O). Then,

(A.12) f = R * g
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PROOF. We start by observing that Qn * (Q * f) = Q * (Qn * f) = Q n+1 * f

which follows from (A.9) and (A.2). Now, replacing f on the right side of

(A.1O) by g + Q * f , and repeating this operation, we obtain

f = g + Q f = (g + Q g + Q2 * g + ... + Qn * g) + Qn+l * f

for any integer n > 1 . In view of (A.3), the first term on the right increases

to R * g , and we see that

(A.13) f= R *g + lim Qn+l f
n

Fix x C E and t C , and let f be bounded by the number b. Then

Q n * f(x,t) = Qn(xdyds) f(y,t-s)

Ex[O,t]

< b [, Qn(x,dy,ds) = b Qn(x,E,[O,t])- Ex1 , t]

which approaches zero as n -- by hypothesis. Thus, lim Qn , f = 0 and in

view of (A.13) the proof is complete.

The condition of the preceding proposition, namely, that Qn(x,E,[O,t]) -- 0

as n --> oo , is difficult to check in practice, especially when Q is given by a

complicated expression as Q and Q are. The following simplifies the task

immensely. We state it in the form needed.

"PR



-30-

(A.14) PROPOSITION. Let Q be a non-defective semimarkov kernel on E and

suppose that the corresponding Markov renewal process (Yn,T) is such that

lir T = + c. Let Q be a semimarkov kernel on E = E x F such that
n

(A.15) Q(x,a; dy,F; ds) < Q(x,dy,ds)

for all x c E, a c F, y E E, s e Z+ . Then,

(A.16) lir Qn(xa; E,F; [o,t]) = 0
n

1- Therefore if f and g are bounded positive functions on E x F x 1+ satisfying

f = g + Q * f , then f = R * g , where R is the Markov renewal kernel cor-

responding to Q.

REMARK. The meaning of (A.15) is as follows: for any positive measurable

function f on E x R+ , the integral of f with respect to the kernel on the left-

side is less than or equal to the integral of f with respect to the kernel on

the right.

PROOF. Suppose that we have shown that

(A.17) Qn(xa; E,F; [O,t]) < Qn(x,E, [0,t])



Then, since

Q (x, E[, t]) = P [T n < tlY n=X]

and since TI -~ ;> as n -;; - by hypothesis, we see that

lim Qn(x,E,[O,t]) = 0

which in turn implies (A.16) via (A.l7). the last statement of the proposi-

tion is now a restatement of Proposition (A.11) , with Q replacing Q.

To complete the proof, then, we need to show (A.17). We do this by

induction on n. For n = 1 , (A.17) is immediate from the condition (A.15).

Suppose (A.17) holds for n. Then,

[Ont]Q (x,a; E,F; [A

- J (x,a; dy,db; ds) -n(y,b; E,F; [0,t-s])

ExFx[10,t]Q

< f Q(x,a; dy,b; ds) Qn( E,O t])
-Ex[,t]

< f Q(x,dy,ds) Qn(y,E, [0,t]) =Qn+l (x,E,[O,t])
Ex[0,t]
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Here, the first inequality is justified by the induction hypothesis, and the

last inequality by the condition (A.15). So, (A.17) holds for n + 1 as well,

and this completes the proof.

We remark that all the conditions of the preceding proposition hold

when Q is the semimarkov kernel associated with the environment process and

Q is either the Q of (3.9) or the Q of (3.22).

|W

ld6
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